From Data to Insights with Google Cloud Platform (DIGCP)

 

Course Overview

Explore ways to derive insights from data at scale using BigQuery, Google Cloud’s serverless, highly scalable, and cost-effective cloud data warehouse. This course uses lectures, demos, and hands-on labs to teach you the fundamentals of BigQuery, including how to create a data transformation pipeline, build a BI dashboard, ingest new datasets, and design schemas at scale.

Who should attend

  • Data Analysts, Business Analysts, Business Intelligence professionals
  • Cloud Data Engineers who will be partnering with Data Analysts to build scalable data solutions on Google Cloud

Prerequisites

Basic proficiency with ANSI SQL (reference)

Course Objectives

  • Derive insights from data using the analysis and visualization tools on Google Cloud
  • Load, clean, and transform data at scale with Dataprep
  • Explore and Visualize data using Google Data Studio
  • Troubleshoot, optimize, and write high performance queries
  • Practice with pre-built ML APIs for image and text understanding
  • Train classification and forecasting ML models using SQL with BigQuery ML

Follow On Courses

Outline: From Data to Insights with Google Cloud Platform (DIGCP)

Module 1: Introduction to Data on Google Cloud Platform

Topics:

  • Analytics Challenges Faced by Data Analysts
  • Big Data On-premise Versus on the Cloud
  • Real-world Use Cases of Companies Transformed Through Analytics on the Cloud
  • Google Cloud Project Basics

Objectives:

  • Compare data infrastructure on-premises versus on Google Cloud.
Module 2: Analyzing Large Datasets with BigQuery

Topics:

  • Data Analyst Tasks, Challenges, and Google Cloud Data Tools
  • Fundamental BigQuery Features
  • Google Cloud Tools for Analysts, Data Scientists, and Data Engineers

Objectives:

  • Identify data analyst tasks, and challenges, and introduce Google Cloud data tools
  • Explore 9 fundamental BigQuery features
  • Compare the differences in roles and toolsets between data analysts, data scientists, and data engineers
  • Access the BigQuery web UI and explore a public dataset with basic SQL
Module 3: Exploring your Data with SQL

Topics:

  • Common Data Exploration Techniques
  • Use SQL to Query Public Datasets

Objectives:

  • Compare common data exploration techniques
  • Identify the key components of a basic SQL SELECT statement and common pitfalls
  • Discuss the basics of SQL functions and how they create calculated fields with input parameters
  • Explore BigQuery public datasets
  • Troubleshoot dataset quality issues by analyzing duplicate records with SQL in the BigQuery Web UI
Module 4: Cleaning and Transforming your Data with Dataprep

Topics:

  • 5 Principles of Dataset Integrity
  • Dataset Shape and Skew
  • Clean and Transform Data using SQL
  • Introducing Dataprep by Trifacta

Objectives:

  • Characterize different dataset shapes and potential skew
  • Clean and transform data using SQL
  • Clean and transform data using Dataprep
Module 5: Visualizing Insights and Creating Scheduled Queries

Topics:

  • Data Visualization Principles
  • Common Data Visualization Pitfalls
  • Looker Studio

Objectives:

  • Compare data visualizations and make recommendations for improvement
  • Create dashboards and visualizations with Looker Studio
Module 6: Storing and Ingesting New Datasheets

Topics:

  • Permanent vs Temporary Data Tables
  • Ingesting New Datasheets

Objectives:

  • Differentiate between permanent and temporary data tables
  • Identify what types and formats of data BigQuery can ingest
  • Differentiate between native BigQuery table storage and external data source connections
  • Load new data into BigQuery
Module 7: Enriching your Data Warehouse with JOINs

Topics:

  • Merge Historical Data Tables with UNION
  • Introduce Table Wildcards for Easy Merges
  • Review Data Schemas: Linking Data Across Multiple Tables
  • JOIN Examples and Pitfalls

Objectives:

  • Explain when to use UNIONs and when to use JOINs
  • Identify the key pitfalls when joining and merging datasets
  • Differentiate between join types visually
  • Explain how union wildcards work and when to use them
  • Write SQL JOINs and UNIONs against a dataset in the BigQuery web UI
Module 8: Advanced Features and Partitioning your Queries and Tables for Advanced Insights

Topics:

  • Advanced Functions (Statistical, Analytic, User-defined)
  • Date-Partitioned Tables

Objectives:

  • Identify the available statistical approximation functions and user-defined functions
  • Apply large-scale record estimation with approximate aggregation functions
  • Deconstruct an analytical window query and explain when to use RANK() and PARTITION
  • Explain when to use Common Table Expressions (WITH) to break apart complex queries
Module 9: Designing Schemas that Scale: Arrays and Structs in BigQuery

Topics:

  • BigQuery Versus Traditional Relational Data Architecture
  • ARRAY and STRUCT Syntax
  • BigQuery Architecture

Objectives:

  • Differentiate between BigQuery and traditional data architecture
  • Work with ARRAYs and STRUCTs as part of nested fields in data schemas
Module 10: Optimizing Queries for Performance

Topics:

  • BigQuery Performance Pitfalls
  • Prevent Data Hotspots
  • Diagnose Performance Issues with the Query Explanation Map

Objectives:

  • Identify BigQuery performance pitfalls
  • Discuss the Query Explanation map and how to interpret MAX and AVG processing times per stage
  • Describe how to analyze and troubleshoot broken queries
Module 11: Controlling Access with Data Security Best Practices

Topics:

  • Hashing Columns
  • Authorized Views
  • IAM and BigQuery Dataset Roles
  • Access Pitfalls

Objectives:

  • Review data access roles within Google Cloud and BigQuery
  • Highlight key data access pitfalls and how to avoid them
Module 12: Predicting Visitor Return Purchases with BigQuery ML

Topics:

  • Machine Learning on Structured Data
  • Scenario: Predicting Customer Lifetime Value
  • Choosing the Right Model Type
  • Creating ML models with SQL

Objectives:

  • Explain how ML on structured data drives value
  • Describe how customer LTV can be predicted with an ML model
  • Choose the right model type for different structured data use cases
  • Create ML models with SQL
Module 13: Deriving Insights from Unstructured Data Using Machine Learning

Topics:

  • ML Drives Business Value
  • How does ML on Unstructured Data Work?
  • Choosing the Right ML Approach
  • Pre-built AI Building Blocks
  • Customizing Pre-built Models with AutoML
  • Building a Custom Model

Objectives:

  • Discuss how ML is able to drive business value
  • Explain how ML on unstructured data works
  • Differentiate between pre-built ML models, custom models, and new models when considering an AI application strategy

Prices & Delivery methods

Online Training

Duration
3 days

Price
  • US $ 1,995
Classroom Training

Duration
3 days

Price
  • United States: US $ 1,995

Click on town name or "Online Training" to book Schedule

Instructor-led Online Training:   This is an Instructor-Led Online (ILO) course. These sessions are conducted via WebEx in a VoIP environment and require an Internet Connection and headset with microphone connected to your computer or laptop. If you have any questions about our online courses, feel free to contact us via phone or Email anytime.

Italy

Online Training Time zone: Central European Summer Time (CEST) Enroll

United Kingdom

Online Training Time zone: British Summer Time (BST) Enroll