Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267)

 

Course Overview

An introduction to developing and deploying AI/ML applications on Red Hat OpenShift AI.

Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) provides students with the fundamental knowledge about using Red Hat OpenShift for developing and deploying AI/ML applications. This course helps students build core skills for using Red Hat OpenShift AI to train, develop and deploy machine learning models through hands-on experience.

This course is based on Red Hat OpenShift ® 4.14, and Red Hat OpenShift AI 2.8.

Course Content

Course Content Summary

  • Introduction to Red Hat OpenShift AI
  • Data Science Projects
  • Jupyter Notebooks
  • Installing Red Hat OpenShift AI
  • Managing Users and Resources
  • Custom Notebook Images
  • Introduction to Machine Learning
  • Training Models
  • Enhancing Model Training with RHOAI
  • Introduction to Model Serving
  • Model Serving in Red Hat OpenShift AI
  • Custom Model Servers
  • Introduction to Workflow Automation
  • Elyra Pipelines
  • KubeFlow Pipelines

Who should attend

  • Data scientists and AI practitioners who want to use Red Hat OpenShift AI to build and train ML models
  • Developers who want to build and integrate AI/ML enabled applications
  • MLOps engineers responsible for installing, configuring, deploying, and monitoring AI/ML applications on Red Hat OpenShift AI

Prerequisites

Course Objectives

Impact on the Organization Organizations collect and store vast amounts of information from multiple sources. With Red Hat OpenShift AI, organizations have a platform ready to analyze data, visualize trends and patterns, and predict future business outcomes by using machine learning and artificial intelligence algorithms.

Impact on the Individual As a result of attending this course, you will understand the foundations of the Red Hat OpenShift AI architecture. You will be able to install Red Hat OpenShift AI, manage resource allocations, update components and manage users and their permissions. You will also be able to train, deploy and serve models, including hot to use Red Hat OpenShit AI to apply best practices in machine learning and data science. Finally you will be able to create, run, manage and troubleshoot data science pipelines.

Outline: Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267)

Introduction to Red Hat OpenShift AI

  • Identify the main features of Red Hat OpenShift AI, and describe the architecture and components of Red Hat AI.

Data Science Projects

  • Organize code and configuration by using data science projects, workbenches, and data connections

Jupyter Notebooks

  • Use Jupyter notebooks to execute and test code interactively

Installing Red Hat OpenShift AI

  • Installing Red Hat OpenShift AI by using the web console and the CLI, and managing Red Hat OpenShift AI components

Managing Users and Resources

  • Managing Red Hat OpenShift AI users, and resource allocation for Workbenches

Custom Notebook Images

  • Creating custom notebook images, and importing a custom notebook through the Red Hat OpenShift AI dashboard

Introduction to Machine Learning

  • Describe basic machine learning concepts, different types of machine learning, and machine learning workflows

Training Models

  • Train models by using default and custom workbenches

Enhancing Model Training with RHOAI

  • Use RHOAI to apply best practices in machine learning and data science

Introduction to Model Serving

  • Describe the concepts and components required to export, share and serve trained machine learning models

Model Serving in Red Hat OpenShift AI

  • Serve trained machine learning models with OpenShift AI

Custom Model Servers

  • Deploy and serve machine learning models by using custom model serving runtimes

Introduction to Workflow Automation

  • Create, run, manage, and troubleshoot data science pipelines

Elyra Pipelines

  • Creating a Data Science Pipeline with Elyra

KubeFlow Pipelines

  • Creating a Data Science Pipeline with KubeFlow SDK

Prices & Delivery methods

Online Training

Duration
4 days

Price
  • US $ 3,525
Classroom Training

Duration
3 days

Price
  • United States: US $ 3,525

Click on town name or "Online Training" to book Schedule

Instructor-led Online Training:   This is an Instructor-Led Online (ILO) course. These sessions are conducted via WebEx in a VoIP environment and require an Internet Connection and headset with microphone connected to your computer or laptop.
*   This class is delivered by a vendor or third party partner.

United States

Online Training 11:00 Eastern Standard Time (EST) * Enroll
Online Training 11:00 Eastern Daylight Time (EDT) * Enroll